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Introduction. In recent work1 I encountered a connection in which the partition
problem (enumeration of the partitions of an integer) and the theory of
permutations collaborate in a way that was unfamiliar to me. Web doodling
led me somehow to the Wikipedia article “Gaussian binomial coefficient,” which
summarizes properties of objects I had never previously encountered (so rare
that they are not indexed in Abramowitz & Stegun), which are described as
“q-analogs of the binomial coefficients” (the “q-analog” concept is also one of
which I have managed to live thus far in total ignorance) and said to “occur in
the counting of symmetric polynomials and in the theory of partitions”—topics
that plausibly related fairly directly to the Lipsky work that inspired me. My
objective here will be to familiarize myself with the basics of those several novel
notions.

Pochhammer symbols /polynomials. Pochhammer symbols are a notational
device—a generalization of n!—commonly attributed to Leo Pochhammer
(1841–1920) because of the use he made of them in his work on special functions
(particularly hypergeometric functions), but the associated Pochhammer
polynomials had been studied already (1730) by James Stirling (1692–1770).
Terminology and notation in this subject area remains wonderfully diverse (see
the Wikipedia article mentioned above). I adopt Pochhammer’s own notation

(x)n ≡ x(x + 1)(x + 2) · · · (x + n − 1)︸ ︷︷ ︸
n factors

: n ! 1 an integer

(x)0 ≡ 1





(1)

1 “Working notes concerning a paper by Lester Lipsky” (November 2016),
pages 42–44.
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because that conforms to the convention adopted by Abramowitz & Stegun,2
by the authors of Mathematica, and by Spanier & Oldham,3 whose Chapter 18
provides an elaborately detailed survey of this subject. Graham, Knuth &
Patashnik4 refer to (x)n as “x to the n rising” (which they denote xn̄). Others
refer simply to the “rising factorial.”5

A generating function for the (x)n is (as Mathematica confirms)

(1 − t)−x =
∞∑

n=0

1
n! (x)ntn (2)

while the falling factorials are generated by (1 + t)x.

From the definition of (x)n it follows directly that (x)k = (x)n(x + n)k−n ;
i.e., that

(x)m+n = (x)n(x + n)m = (x)m(x + m)n (3)
and that (1)n = n! (4)
while it follows as a corollary from (3) that

(x + m)n

(x)n
= (x + n)m

(x)m
(5)

In the case m = 1 this gives the recursion relation with respect to argument

(x + 1)n =
(

x + n
x

)
· (x)n (6.1)

Also

(x)n+1 = (x)n(x + n)1 = (x + n)(x)n (6.2)
= x(x + 1)n

which provides recursion with respect to degree.6

Theory of the gamma function (Spanier & Oldham, 43:5:10, page 436)
supplies

Γ (x + n)
Γ (x)

= (x)n : n = 1, 2, 3, . . . (7.1)

2 Handbook of Mathematical Functions (1964).
3 An Atlas of Functions (1987).
4 Concrete Mathematics (1994).
5 Write the factors that define the “falling factorial” (which Graham et al.

call “x to the n falling” and denote xn
¯) in reverse order and it becomes a rising

factorial:
x(x − 1)(x − 2) · · · (x − n + 1)︸ ︷︷ ︸

n factors

= (x − n + 1)n

The expression on the left can be written (−)n(−x)n so one has the “reflection
formula”

(−x)n = (−)n(x − n + 1)n

6 In point of terminology: (x)n = (argument)degree.
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which written

(x)y = Γ (x + y)
Γ (x)

(7.2)

serves to relax the stipulation that n be a non-negative integer.7 This extended
definition permits one on the basis of (3) to write (x)0 = (x)n(x + n)−n or

1
(x)n

= (x + n)−n (8)

Familiarly
Γ (n) = (n − 1)! : n = 1, 2, 3, . . .

so (7.2) can be written

(x)y = (x + y − 1)!
(x − 1)!

= y!
( x + y − 1

y

)
: {x, y} = 1, 2, 3, . . . (9)

As the factorial and binomial coefficient are implemented by Mathematica this
equation remains valid even when {x, y} are non-integral (any real numbers).
“Vandermonde’s theorem” asserts that

(x + y)n =
n∑

k=0

( n
k

)
(x)k(y)n−k (10)

which can reportedly8 be obtained as a corollary of the Chu-Vandermonde
identity

( x + y
n

)
=

n∑

k=0

( x
k

)( y
n − k

)

which is a non-integral extension of the Vandermonde’s combinatorial identity
(“Vandermonde’s convolution,” 1772), which appears already in Jade Mirror of
the Four Elements (1303), by Chu Shih-Chieh.9 Equation (10) resembles the
binomial theorem, except that the familiar exponents have become subscripts;
this kind of replacement is the hallmark of the “umbral calculus,” which feeds on
the observation that formal parallels similar to (10) arise also from (for example)
the theory of Hermite polynomials (S & O 25:5:2, page 219) and Bernoulli
polynomials (S & O 19:5:3, page 169). But in other ways the Pochhammer
polynomials—which arise when n is a non-negative integer, and of which the

7 This evidently is the extended definition built into Mathmatica, which
responds to the command Pochhammer[x,n] whether or not n is a non-negative
integer.

8 See the Wikipedia articles “Vandermonde’s identity.”
9 For a fascinating account of the amazing accomplishments of Chu and his

predecessors, see the Wikipedia article “Chinese mathematics.”
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first few are
(x)0 = 1
(x)1 = x

(x)2 = x2 + x

(x)3 = x3 + 3x2 + 2x

(x)4 = x4 + 6x3 + 11x2 + 6x

(x)5 = x5 + 10x4 + 35x3 + 50x2 + 24x

—stand oddly apart: they do not arise from a differential equation, do not
possess orthogonality properties, do not possess natural relationships to other
families of named polynomials. One does, however, have10 the identity

(x)m(x)n =
lesser{m,n}∑

k=0

( m
k

)( n
k

)
k!(x)m+n−k

which places one in position to write
( ∑

m am(x)m

)( ∑
n bn(x)n

)
=

∑
k cmn,k(x)k

which is to say: the falling factorials are elements of a polynomial ring. The
“connection coefficients” are confirmed by Mathematica to be describable

( m
k

)( n
k

)
k! = (m)k(n)k

k!

=
{

number of distinct ways one can select k αs and k βs
from {α1, α2, . . . , αm}, {β1, β2, . . . , βn}.

Google reports the existence of literature relating to various “generalized
Pochhammer symbols/polynomials,” some of which may be of future interest
because they involve the partitions p(n) of integers n.

The “q-analog” concept. The idea here goes back to Euler, and was cultivated
also by Gauss. One has

lim
q→1

1 − qn

1 − q
= n : all n, whether integral, real or complex

which suggests that, in formulæ—especially those encountered in combinatorics
and special function theory—where integers occur, one might profitably
contemplate replacements

n −→ [n]q ≡ 1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1

︸ ︷︷ ︸
n terms

(11)

—at least in cases where that adjustment does not do too much damage to
preexisting formal relationships.

10 Here (x)n denotes the falling factorial.
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It becomes, in this light, natural to consider the “q -factorial”

[n]q! = [1]q · [2]q · · · [n − 1]q · [n]q (12)

= 1 − q
1 − q

· 1 − q2

1 − q
· · · 1 − qn−1

1 − q
· 1 − qn

1 − q

= 1 · (1 + q) · · · (1 + q + · · · + qn−2) · (1 + q + · · · + qn−1)

As remarked in the Wikipedia article “q-analog,” while the factorial n! counts
the number of permutations of {1, 2, . . . , n}, the q-factorial enumerates the
inversions in the list of permutations. For example, command

Perms4=Permuatations[{1,2,3,4}]
to create a list of the 24 permutations of {1, 2, 3, 4}. The command

Tally[Table[Inversions[Perms4[[k]]],{k,1,24}]
produces11

{{0, 1}, {1, 3}, {2, 5}, {3, 6}, {4, 5}, {5, 3}, {6, 1}}

from which we learn, for example, that 5 of the permutations require 2 inversions
to be restored to canonical order. Observe now that

qFactorial[4,q]//Simplify//Expand
produces

(1 + q)(1 + q + q2)(1 + q + q2 + q3) = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6

in which the exponents and coefficients conform precisely to the pattern in the
tallyed list of inversions. And since every permutation contributes once to that
list, we are not surprised to find (set q = 1) that 1 + 3 + 5 + 6 + 5 + 3 + 1 = 24.
For arbitrary n we expect on this basis to have

∑

℘

qinversions(℘) = [n]q! (13)

where ℘ ranges over the permutations of {1, 2, . . . , n}. But of this result—
demonstrated above in the case n = 4 and asserted in the literature—I am not
in position to provide a general proof.

Looking to the q-analog of the monomial xn we might expect to write

xn −→ [xn]q = x[n]q

giving d
dxxn = nxn−1 −→ d

dx [xn]q = [n]qx[n]q−1

The formal substance of q-analog mathematics is, however, better served if one
introduces a “q-derivative,” writing

(
d
dx

)
q
xn = [n]qxn−1 (14)

11 The symmetry evident here is a general feature of such lists.
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If the “q-exponential” is defined

eq(x) ≡
∞∑

n=0

1
[n]q!

xn (15.1)

one then has (
d
dx

)
q
eq(x) = eq(x) (15.2)

From definitions

sinq(x) ≡ x − 1
[3]q!

x3 + 1
[5]q!

x5 − 1
[7]q!

x7 + · · ·

cosq(x) ≡ 1 − 1
[2]q!

x2 + 1
[4]q!

x4 − 1
[6]q!

x6 + · · ·

one is led similarly to (
d
dx

)
q
sinq(x) = + cosq(x)

(
d
dx

)
q
cosq(x) = − sinq(x)

which illustrate the “persistence of formal relationships” which q-analog
mathematics strives to maintain. There are, however, surprises: with the
assistance of Mathematica we satisfy ourselves that12

n∑

k=0

(−)k 1
[k]q![n − k]1/q!

=
{

1 : n = 0
0 : n = 1, 2, 3, . . .

from which it follows that

[eq(x)] –1 is given not by eq(−x) but by e1/q(−x) (15.3)

As the preceding examples illustrate, the construction of useful/informative
q-analogs is not generally a matter of straightforward application of (11)—if it
were one would expect the q-analog of the Pochhammer symbol (1) to be defined
by the construction

x(x + [1]q)(x + [2]q) · · · (x + [n − 1]q)

—but it isn’t: by universal convention the q -Pochhammer symbol is denoted/
defined

(a; q)n =
n−1∏

k=0

(1 − aqk) = (1 − a)(1 − aq)(1 − aq2) · · · (1 − aqn−1)︸ ︷︷ ︸
n factors

(a; q)0 = 1





(16)

12 Again I possess no explicit proof, but note that

[n]1/q! =
[n]q!
q∆(n)

where ∆(n) denotes the triangular number
∑n−1

i=1 i = 1
2n(n − 1).
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From (16) we obtain

(a; q)∞ =
∞∏

k=0

(1 − aqk)

and Euler’s function13

φ(q) = (q; q)∞ =
∞∏

k=1

(1 − qk) = (1 − q)(1 − q2)(1 − q3) · · ·

From
(q ; q)n

(1 − q)n
= 1 − q

1 − q
1 − q2

1 − q
1 − q3

1 − q
· · · 1 − qn

1 − q

= [1]q[2]q[3]q · · · [n]q
= [n]q! (17)

we obtain the anticipated relationship between Pochhammer’s “rising factorial”
and the q -Pochhammer symbols.

It was remarked on page 5 that [n]q some fairly recondite things to say
about the permutations of {1, 2, . . . , n}. Similarly recondite information about
the partitions of n can be obtained from (a ; q)∞.14 It is asserted, for example,
that

1
(a ; q)∞

=
∞∑

m,n=0

pm,namqn

pm,n =
{

number of ways n can be partitioned
into m or fewer parts

which I must again be content to demonstrate by example. The command
IntegerPartitions[6,3] lists the partitions of 6 into 3 or fewer parts:

{{6}, {5, 1}, {4, 2}, {4, 1, 1}, {3, 3}, {3, 2, 1}, {2, 2, 2}}

of which there are p3,6 = Length[IntegerPartitions[6,3]] = 7. Proceeding
in this way, we construct the following table:

p1,6 = 1
p2,6 = 4
p3,6 = 7
p4,6 = 9

p5,6 = 10
p6,6 = 11
p7,6 = 11
p8,6 = 11

13 The Mathematica commands

QPochhammer[a,q,n] produce (a; q)n

QPochhammer[a,q] produce (a; q)∞
QPochhammer[q] produce (q ; q)∞

14 See the Wikipedia article “q-Pochhammer symbol,” which provides a rich
store of identities.
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where the repeated 11s occur because 6 cannot be partitioned into more than
6 parts: 6 = 1 + 1 + 1 + 1 + 1 + 1; the answer to the question pm,n (m > n) is
implicit in the answer to the question p6,6. Looking now to the second half of
the assertion, the command

SeriesCoefficient[Series[f(x),{x,0,m],n] : m > n

produces the coefficient of xn in the expansion of f(x), and supplies the
information that(in particular) the coefficient of q6 in the q-expansion of (a; q)−1

∞
is

a + 3a2 + 3a3 + 2a4 + a5 + a6

1 − a

= a + 4a2 + 7a3 + 9a4 + 10a5 + 11a6 + 11a7 + 11a8 + · · ·

The coefficients are seen to be precisely those that appear in the preceding table,
and it is now evident that the repeated 11s can be attributed to the repetitive
structure of (1 − a) = 1 + a + a2 + a3 + · · · .

q -Pochhammer symbols enter frequently into the construction of q-analogs.
For example, one has14

Γq(x) = (1 − q)1−x(q ; q)∞
(q x ; q)∞

—a definition justified by the fact that it entails

Γq(x + 1) = [x]qΓq(x) : any x (18.1)
Γq(n + 1) = [n]q! : n any non-negative integer (18.2)

Gaussian binomial coefficients. These are straightforward q -analogs of ordinary
binomial coefficients, denoted/defined by

( n
m

)

q
=

[n]q!
[m]q![n − m]q!

(19.1)

=

{
(1 − qn)(1 − qn−1) · · · (1 − qn−m+1)

(1 − q)(1 − q2) · · · (1 − qm)
: m " n

0 : m > n

which by (17) and (18.1) can also be described

= (q ; q)n

(q ; q)m(q ; q)n−m
(19.2)

=
Γq(n + 1)

Γq(m + 1)Γq(n − m + 1)
(19.3)

and give back ordinary binomial coefficients in the limit q → 1. Ordinary
binomial coefficients—whether considered to arise from (x+y)n or in response to
questions like “in how many ways can m objects be selected from n, irrespective
of order?” or “in how many ways can m 1s and n − m 0s be arranged?”—are
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obviously integers, though

( n
m

)
= n(n − 1) · · · (n − m + 1)

1 · 2 · 3 · · · · · m : n and m " n integers

gives every appearance of being a fraction.15 Similarly, (19.1) seems to indicate
that Gaussian binomial coefficients are ratios of polynomials, but in fact they
are (again, the demonstration eludes me) polynomials, as the literature claims
and Mathematica confirms:

Series[QBinomial[5,2,q],{q,0,8}]//Normal

= Series[
(1-q5)(1-q4)
(1-q)(1-q2)

,{q,0,8}]//Normal

= 1 + q + 2q2 + 2q3 + 2q2 + q5 + q6

Thus

QBinomial[6,0,q] = 1

QBinomial[6,1,q] = 1 + q + q2 + q3 + q4 + q5

QBinomial[6,2,q] = 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8

QBinomial[6,3,q] = 1 + q + 2q2 + 3q3 + 3q4 + 3q3 + 3q6 + 2q7 + q8 + q9

QBinomial[6,4,q] = 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8

QBinomial[6,5,q] = 1 + q + q2 + q3 + q4 + q5

QBinomial[6,6,q] = 1

which are seen to conform to the familiar symmetry evident in (19.1)

( n
m

)

q
=

( n
n − m

)

q
(20)

and also in each instance to possess symmetrically deployed integral coefficients.
Extrapolation from a population of illustrative cases leads to the inference that

degree δ(n, m) of
( n

m

)

q
= m(n − m) : m = 0, 1, 2, . . . , n (21)

which in the case n = 6 produces (as above) the sequence {0, 5, 8, 9, 8, 5, 0}.

Mathematica’s implementation of the Gaussian binomial coefficients
appears to be based upon some variant of (19.3), for QBinomial[x,y,q] gives
plottable numerical results even when {x, y} are not integers. Mathematica
struggles when asked to produce more than the first few terms in the q-expansion
of QBinomial[x,y,q], and appears to be attempting to construct not a
polynomial but an infinite series with complex coefficients.

15 Curiously, I have been unable to discover or divise a demonstration that
such ratios assume only integral values.
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Here I tabulate the values of QBinomial[n,m, 1
2] for n = 0, 1, 2, . . . , 6 and

m = 0, 1, . . . , n:
1
1 1
1 3

2 1
1 7

4
7
4 1

1 15
8

35
16

15
8 1

1 31
16

155
64

155
64

31
16 1

1 63
32

651
256

1395
512

651
256

63
32 1

At q = 1 we recover the familiar Pascal triangle, while at q = 3
2 we have

1
1 1
1 5

2 1
1 19

4
19
4 1

1 65
8

247
16

65
8 1

1 211
16

2743
64

2743
64

211
16 1

1 665
32

28063
256

96005
512

28063
256

665
32 1

Note the persistence of the denominators (in these cases all powers of 2) and
the familiar bilateral symmetries. It is reported in the literature16 (and readily
confirmed by computation) that

( n
m

)

q
=






qm
( n − 1

m

)

q
+

( n − 1
m − 1

)

q
( n − 1

m

)

q
+ qn−m

( n − 1
m − 1

)

q

(22)

which gave back the Pascal identity in the limit q → 1. One can expect most
of the numerous binomial identities to have fairly direct Gaussian analogs.

Gaussian binomial coefficients are sometimes called“Gaussianpolynomials,”
and their properties/interrelationships looked upon as relationships among
polynomials.17 For example (22)—which in the case n = 6, m = 2 reads

( 6
2

)

q
=






q2
( 5

2

)

q
+

( 5
1

)

q
( 5

2

)

q
+ q4

( 5
1

)

q

16 See, for example, the Wikipedia article “Gaussian binomial coefficient.”
17 I will, as a typographic convenience, allow myself to write Gn,m(q) when

it is my intent to emphasize the polynomial character of
(n
m

)
q
.
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—becomes
1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8

= q2(1 + q2 + 2q2 + 2q3 + 2q4 + q5 + q6)

+ (1 + q + q2 + q3 + q4)

= (1 + q2 + 2q2 + 2q3 + 2q4 + q5 + q6)

+ q4(1 + q + q2 + q3 + q4)
One could, by this recursive process, construct a “Pascal triangle” of Gauss
polynomials/coefficients.

I describe now a combinatorial argument16 that provides an interpretation
of the Gauss polynomials Gn,m(q) and leads to their direct construction. Let
Gn,m be a rectangular grid: height m, base n − m, area m(n − m).18 Shortest
paths from the lower left to upper right corners of Gn,m involve necessarily
(n − m) steps → to the right (called “1-steps”) and m steps ↑ up (called
“0-steps). One such path associates with each of the permutations ℘ of

{1, 1, . . . , 1︸ ︷︷ ︸
n−m

, 0, 0, . . . , 0︸ ︷︷ ︸
m

}

of which there are
(n
m

)
. I employ the symbol ℘ to denote either a path or

the permutation that generates it, and write α(℘) to denote the area under ℘.
I describe now, by way of illustration, the constructions that enter into the
assembly of G6,2(q); here • signifies unit area under ℘ :

℘1 : {1, 1, 1, 1, 0, 0}
(
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

)
α = 0

℘2 : {1, 1, 1, 0, 1, 0}
(
◦ ◦ ◦ ◦
◦ ◦ ◦ •

)
α = 1

℘3 : {1, 1, 1, 0, 0, 1}
(
◦ ◦ ◦ •
◦ ◦ ◦ •

)
α = 2

℘4 : {1, 1, 0, 1, 1, 0}
(
◦ ◦ ◦ ◦
◦ ◦ • •

)
α = 2

℘5 : {1, 1, 0, 1, 0, 1}
(
◦ ◦ ◦ •
◦ ◦ • •

)
α = 3

℘6 : {1, 0, 1, 1, 1, 0}
(
◦ ◦ ◦ ◦
◦ • • •

)
α = 3

℘7 : {1, 1, 0, 0, 1, 1}
(
◦ ◦ • •
◦ ◦ • •

)
α = 4

℘8 : {1, 0, 1, 1, 0, 1}
(
◦ ◦ ◦ •
◦ • • •

)
α = 4

℘9 : {0, 1, 1, 1, 1, 0}
(
◦ ◦ ◦ ◦
• • • •

)
α = 4

18 See again (21), where m(n − m) was encountered in what then seemed to
be quite another connection.
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℘10 : {1, 0, 1, 0, 1, 1}
(
◦ ◦ • •
◦ • • •

)
α = 5

℘11 : {0, 1, 1, 1, 0, 1}
(
◦ ◦ ◦ •
• • • •

)
α = 5

℘12 : {1, 0, 0, 1, 1, 1}
(
◦ • • •
◦ • • •

)
α = 6

℘13 : {0, 1, 1, 0, 1, 1}
(
◦ ◦ • •
• • • •

)
α = 6

℘14 : {0, 1, 0, 1, 1, 1}
(
◦ • • •
• • • •

)
α = 7

℘15 : {0, 0, 1, 1, 1, 1}
(
• • • •
• • • •

)
α = 8

The claim is that in general

Gn,m(q) =
∑

℘

qα(℘) (23.1)

=
∑

α

#(α)qα (23.2)

where #(α) denotes the number of paths that subtend area α. In the instance
at hand this gives

G6,2(q) = 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8

in precise agreement with the development of QBinomial[6,2,q] reported on
page 9. The argument that led to (23)19 makes quite clear the origin of (21);
i.e., why it is that Gn,m(q) is a polynomial of degree δ = m(n−m) into which
q δ enters with unit coefficient, and also how it comes about that

Gm,n(1) = sum of coefficients =
(

n

m

)

I have been unable to discover any reference to the context within which
Gauss was led to the invention of Gaussian binomial coefficients/polynomials
(suppose it had to do with his hypergeometric work), or any indication of the
grounds on which the ℘-method is naturally motivated.

One expects the straightforward adjustment that led (page 8) from ordinary
binomial coefficients to their Gaussian q-analogs to lead similarly to q-analogs
of the multinomial coefficients.

19 Which I am tempted to call the “path integral method,” and which brings
to mind the many contexts that involve constructions of the form

∮
loop, the

“loops” in the present contest being joins of {1, 1, . . . , 1, 0, 0, . . . 0} and its
permutations ℘.
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Bell polynomials. I approach this subject as I first encountered it, which
was—quite unexpectedly—while preparing some undergraduate lectures on
probability theory.20 Proceeding in the rough informality appropriate to that
occasion. . .

Let p(x) be a probability distribution function defined in the entire real
line, and assume it to be the case that all moments

mk =
∫

xkp(x)dx = 〈xk〉

exist.21 The “moment generating function” is

f(t) =
∞∑

k=0

1
k!mktk =

∫
extp(x)dt = 〈ext〉

but often more convenient/informative is the “characteristic function”

ϕ(t) =
∞∑

k=0

1
k!mk(it)k =

∫
eixtp(x)dt = 〈eixt〉

= Fourier transform of p(x)

from which (i.e., when possessed of all moments) one can recover p(x) by inverse
Fourier transformation:

p(x) = 1
2π

∫
e−ixtϕ(t)dt

While the moments {m1, m2, . . .} provide a characteriztion of p(x), so also do
the “cumulants” {κ1, κ2, . . .}, which were introduced in 1903 by the Danish
astronomer and statistician T. N. Thiele (1838–1910), and arise from writing

20 Prior to 1969 the Reed College physics curriculum provided no systematic
account of the probability and statistical theory most relevant to physicists,
and no thermodynamics beyond that presented in the introductory course. To
remedy this defect, I introduced a “Statistical Physics & Thermodynamics”
course (which evolved into the present “Thermal Physics” course, required of all
majors). I borrow here from Chapter I of the notes (1969–1972) written for that
initial series of lectures.

21 This is certainly a strong assumption, since the Cauchy distribution

p(x) = 1
π(1 + x2)

—first studied by Poisson (1824) and only later by Cauchy (1853), known among
physicists as the Lorentz or Breit-Wigner distribution—possesses moments of
no integral order, even though when plotted it looks very “normal.”
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ϕ(t) =
∞∑

k=0

1
k!mk(it)k = eψ(t) (24.1)

ψ(t) =
∞∑

k=1

1
k!κk(it)k (24.2)

where the lower limit of the latter sum is (not 0 but) 1 because ϕ(0) = m0 = 1
implies ψ(0)=κ0 =0(mod2π). When with Mathematica’s assistance we expand
eψ we obtain

m0 = 1
m1 = κ1

m2 = κ2
1 + κ2

m3 = κ3
1 + 3κ1κ2 + κ3

m4 = κ4
1 + 6κ2

1κ2 + 4κ1κ3 + 3κ2
2 + κ4






(25)

...

which describe moments of ascending order in terms of cumulants of ascending
order.22

It is in connection with the systematic derivation of (25) that Bell enters
the picture.23 Equations (24), which concern the description of moments {mn}
in terms of cumulants {κk}, present an instance of the general problem of
expanding a composite function

F (x) = Φ(f(x)) =
∞∑

n=0

1
n!Fnxn

the solution of which hinges on one’s ability to construct the nth derivative of
such a function. As it happens, in 1958, when I confronted another instance of
that problem and had gone to the library in quest of a related paper,24 I looked

22 These equations assume a simpler appearance when expressed in terms of
“centered moments” (or “moments about the mean”)

µn = 〈(x − m)n〉 =
n∑

k=0

(
n

k

)
mk(−m)n−k : m = m1

See the “Statistical Physics” notes20, page 37.
23 Eric Temple Bell (1883–1960) wrote, among other things, The Development

of Mathematics (1940), Men of Mathematics (1937) and much science fiction.
He was a guest of Robert Rosenbaum and the Reed College mathematics faculty
in the spring of 1953, when I had an opportunity to meet him. My autographed
copy of Men of Mathematics was important to me during my early career. But
I loaned it to a student and—alas!—never saw it again.

24 A. Dresden,“The derivatives of composite functions,”Amer. Math. Monthly
50, 9 (1943).
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into the current issue of that journal and encountered an item that answered
precisely to my needs: V. F. Ivanoff25 challenged readers to show that the nth

derivative F (n)(x) of the composite function F (x) = Φ(f(x)) can be described

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′D f ′′D f ′′′D f ′′′′D · · · f (n)D
−1 f ′D 2f ′′D 3f ′′′D · · ·

(n−1
1

)
f (n−1)D

0 −1 f ′D 3f ′′D · · ·
(n−1

2

)
f (n−2)D

0 0 −1 f ′D · · ·
(n−1

3

)
f (n−3)D

...
...

...
...

...
0 0 0 0 · · · f ′D

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ(f) (26)

where f (k) ≡ ( d
dx )kf(x) and DkΦ(f) ≡ ( d

df )kΦ(f). I was able to develop
several alternative demonstrations and associated recursion relations, and over
the years have drawn upon (26) and its corollaries to crack a wide assortment of
problems.26 Only much later did I discover that (26) has come to be known as
“Faà di Bruno’s formula,” though (if not yet in determinantal form) it first
appeared (1800) in a calculus treatise by Louis François Antoine Arbogast
(1759–1803). Faà di Bruno27 (1825 –1888) entered the picture with the
publication in 1855 and 1857 of a pair of 2-page papers in which the determinant
(26) first appeared, and a text (1876) that finally provided detailed arguments.

Of exceptional simplicity—and importance, because of its very frequent
occurance—is the case Φ(f) = ef . Then DΦ = Φ and the D operators can be
dropped from (26). Equations (24) provide an instance of just such a case, so
by (26) we have (recall κ0 = 0)

25 Advanced Problem No. 4782, Amer. Math. Monthly 65, 212 (1958).
26 See “Foundations and applications of the Schwinger action principle,”

Appendix A, pages 128–157 (Brandeis University dissertation, 1960); “Some
applications of an elegant formula due to V. F. Ivanoff,” notes for a seminar
presented 28 May 1969 to the Applied Math Club at Portland State University,
reprinted in my Collected Seminars 1963-1970 ; “Algorithm for the efficient
evaluation of the trace of the inverse of a matrix,” (December 1996).

27 Francesco Faà di Bruno began his career as a military officer, but resigned
his commission to study mathematics in Paris, where his dissertation was
directed by Cauchy and he became a close friend of Hermite. He taught at the
University of Turin (Peano was one of his students), but at the advanced age
of 51 was ordained as a priest, and devoted himself to finding ways to relieve
the plight of maids, domestic servants, unmarried mothers and prostitutes;
he founded a publish house that employed orphaned girls as mathematical
typesetters. In 1988 he was beatified by Pope John Paul II. For a detailed
account of Faà di Bruno’s work (and the work of others) as it relates to his
eponymous formula, see Warren Johnson, “The curious history of Faà di Bruno’s
formula,” Amer. Math. Monthly 109, 217–234 (2002), which is available as a
free pdf download on the web.
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m0 = 1
m1 = κ1

m2 =
∣∣∣ κ1 κ2

−1 κ1

∣∣∣

mn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

κ1 κ2 κ3 κ4 · · · κn

−1 κ1 2κ2 3κ3 · · ·
(n−1

1

)
κn−1

0 −1 κ1 3κ2 · · ·
(n−1

2

)
κn−2

0 0 −1 κ1 · · ·
(n−1

3

)
κn−3

...
...

...
...

...
0 0 0 0 · · · κ1

∣∣∣∣∣∣∣∣∣∣∣∣∣

which give back (25).

To invert (25) (i.e., to describe cumulants in terms of moments) we work
from the functional inverse of (24):

∞∑

n=0

1
n!κnλn = log

[ ∞∑

k=0

1
k!mkλk

]

By (26) we have

κ0 = log m0 = log 1 = 0

κn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

m1D m2D m3D m4D · · · mnD
−1 m1D 2m2D 3m3D · · ·

(n−1
1

)
mn−1D

0 −1 m1D 3m2D · · ·
(n−1

2

)
mn−2D

0 0 −1 m1D · · ·
(n−1

3

)
mn−3D

...
...

...
...

...
0 0 0 0 · · · m1D

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ(f)
∣∣∣
λ=0

with Φ(f) = log f but now—as in all non-exponential cases—cannot abandon
but must take into explicit account the action of the D-operators. Expanding
the determinants, we have

κ1 =
[
m1D

]
log f

∣∣
λ=0

κ1 =
[
m2D + m2

1D
2
]
log f

∣∣
λ=0

κ2 =
[
m3D + 3m1m2D

2 + m3
1D

3
]
log f

∣∣
λ=0

κ3 =
[
m4D + (3m2

2 + 4m1m3)D2 + 6m2
1m3D

3 + m4
1D

4
]
log f

∣∣
λ=0

Using Dk log(f) = (−)k−1(k − 1)!f−k which becomes (−)k−1(k − 1)! at λ = 0,
we find

κ1 = m1

κ2 = m2 − m2
1

κ3 = m3 − 3m1m2 + 2m3
1

κ4 = m4 − 4m1m3 + 12m2
1m2 − 3m2

2 − 6m4
1






(27)
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which agree precisely with the results produced by the command
Series[Log[1 + m1λ + 1

2m2λ2 + 1
6m3λ3 + 1

24m4λ4],{λ, 0, 4}]

We note that terms on the right side of (25)—ditto those on the right side of
(27)—associate in an obvious way with the partitions of the subscripted index:

Partitions[1] = {1}
Partitions[2] = {2}, {1, 1}
Partitions[3] = {3}, {2, 1}, {1, 1, 1}
Partitions[4] = {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}

The following remarks refer to the elegant iceberg of which that observation
exposes only the tip. We look to this slight notational variant of (24):

Ĝ(t, u) = exp
{

u
∞∑

j=1

xjt
j
}

(28.1)

= 1 +
∞∑

n=1

tn
{ n∑

k=1

1
k!u

kB̂n,k(x1, x2, . . . , xn−k+1)
}

(28.2)

where the B̂n,k are “ordinary partial Bell polynomials”28 and Ĝ(t, u) is their
generating function. If we use

G=Series[Exp[u
∑10

j=1 xjtj],{t,0,8},{u,0,8}]//Simplify
to construct leading terms in the double series, and use (say)

6!SeriesCoefficient[G,{6}]
to pull out the coefficient of t6 we obtain

6∑

k=1

1
k!u

kB̂6,k(x1, x2, . . . , x6−k+1)

=
{
ux6 + 1

2!u
2(x2

3 + 2x2x4 + 2x1x5)

+ 1
3!u

3(x3
2 + 6x1x2x3 + 3x2

1x4)

+ 1
4!u

4(6x2
1x

2
2 + 4x3

1x3) + 1
5!u

5(5x4
1x2) + 1

6!u
6(x6

1)
}

The deployment of subscripts is seen to conform precisely to p(6, k), the
partitions of 6 into k parts (produced by IntegerPartitions[6,{k}])

p(6, 1) : {6}
p(6, 2) : {5, 1}, {4, 2}, {3, 3}
p(6, 3) : {4, 1, 1}, {3, 2, 1}, {2, 2, 2}
p(6, 4) : {3, 1, 1, 1}, {2, 2, 1, 1}
p(6, 5) : {2, 1, 1, 1, 1}
p(6, 6) : {1, 1, 1, 1, 1, 1}

28 Terminology taken from the Wikipedia article “Bell polynomials,” where
such polynomials are denoted B̂n,k to distinguish them from the “exponential
partial Bell polynomials” Bn,k: see below.
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while the fractional coefficients are seen to have the form
k!

product of factorials of the exponents

We see in particular that B̂6,3(x1, x2, x3, x4) can be described

B̂6,3 = x3
2 + 6x1x2x3 + 3x2

1x4) = 3!
∑

µ

′′xµ1
1 xµ2

2 xµ3
3 xµ4

4

µ1!µ2!µ3!µ4!

where the
∑′′ ranges over all sets {µ1, µ2, µ3, µ4} such that

µ1 + µ2 + µ3 + µ4 = 3
µ1 + 2µ2 + 3µ3 + 4µ4 = 6

i.e., over {0, 3, 0, 0}, {1, 1, 1, 0} and {2, 0, 0, 1}. Generally

B̂n,k(x1, x2, . . . , xν) =
∑

µ

′′ k!
µ1!µ2! · · ·µν !

xµ1
1 xµ2

2 · · ·xµν
ν (29)

µ1 + µ2 + · · · + µν = k

µ1 + 2µ2 + · · · + νµν = n

where ν ≡ n − k + 1 and k = 0, 1, 2, . . . , n (n = 0, 1, 2, . . .). We note that
B̂0,0 = 1 and that B̂n,k(x1, x2, . . . , xν) is homogeneous of degree k.

The associated “exponential partial Bell polynomials” Bn,k(x1, x2, . . . , xν)
are generated by

G(t, u) = exp
{

u
∞∑

j=1

1
j!xjt

j
}

(30.1)

= 1 +
∞∑

n=1

1
n! t

n
{ n∑

k=1

ukBn,k(x1, x2, . . . , xn−k+1)
}

(30.2)

can be obtained from

Bn,k(x1, x2, . . . , xν) = n!
k! B̂n,k( 1

1!x1,
1
2!x2, . . . ,

1
ν!xν)

which gives, for example,

B6,3(x1, x2, x3, x4) = 120
(
( 1
2x2)3 + 6x1( 1

2x2)( 1
6x3) + 3x2

1(
1
24x4)

)

= 15x3
2 + 60x1x2x3 + 15x2

1x4

The coefficients in such expressions can be obtained from theory having to do
with the “partitions of sets.”28 In the present instance

15 =
{

number of ways to partition a 6-element set
into subsets of sizes 2, 2 and 2

60 =
{

number of ways to partition a 6-element set
into subsets of sizes 1, 2 and 3

15 =
{

number of ways to partition a 6-element set
into subsets of sizes 1, 1 and 4
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I indicate how Mathematica can be coaxed to producd those numbers. Let the
elements of the 6-element set be {1, 2, 3, 4, 5, 6}. The command

W=KSetPartitions[{1,2,3,4,5,6},3]
produces a list of 90 such partitions, of which the first is {{1}, {2}, {3, 4, 5, 6}}
and the last is {{1, 4}, {2, 5}, {3, 6}}. The command

X=Table[Table[Length[Part[W[[j]],k]],{k,1,3}],{j,1,Length[W]]
tabulates the lengths of the respective parts of the partitions listed in W. The
command

Y=Table[Sort[Part[X,k]],{k,1,Length[X]]
places the members of each 3-member set in that 90-set list in natural order,
and the command Tally[Y] announces

{{2, 2, 2}, 15}, {{1, 2, 3}, 60}, {{1, 1, 4}, 15}

—as claimed.

If in (30) we set u = 1 we obtain the generator of the “complete exponential
Bell polynomials”

G(t, u) = exp
{ ∞∑

j=1

1
j!xjt

j
}

= 1 +
∞∑

n=1

1
n! t

n
{ n∑

k=1

Bn,k(x1, x2, . . . , xn−k+1)
}

=
∞∑

n=0

1
n! t

nBn(x1, x2, . . . , xn)

of which the first few (as constructed by Mathematica) are

B0 =1
B1(x1) =x1

B2(x1, x2) =x2
1 + x2

B3(x1, x2, x3) =x3
1 + 3x1x2 + x3

B4(x1, x2, x3, x4) =x4
1 + 6x2

1x2 + 3x2
2 + 4x1x3 + x4

B5(x1, x2, x3, x4, x5) =x5
1 + 10x3x3 + 15x1x

2
2 + 10x2

1x3 + 10x2x3 + 5x1x4 + x5

They can be described determinantally and possess a rich variety of algebraic
interrelationships which I will not linger to describe. When all xi are set equal
to x (i.e., when all subscripts are abandoned) they become “Bell polynomials”

B0(x) = 1
B1(x) = x

B2(x) = x + 3x2 + x3

B4(x) = x + 7x2 + 6x3 + x4

B5(x) = x + 15x2 + 25x3 + 10x4 + x5
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which can be generated by developing exp[(et − 1)x] in powers of t

exp[(et − 1)x] =
∞∑

n=0

1
n!Bn(x)tn (31)

and which at x = 1 produce “Bell numbers” Bn.29 Bell polynomials Bn(x)
inherit properties from the complete exponential Bell polynomials. One has,
for example,

Bn(x + y) =
n∑

k=0

(
n

k

)
Bk(x)Bn−k(y)

which is a corollary of

Bn(x1 + y1, . . . , xn + yn)

=
n∑

k=1

(
n

k

)
Bk(x1, . . . , xk)Bn−k(y1, . . . , yn−k)

and—because exponents have become subscripts—resembles a q -analog of

(x + y) =
n∑

k=0

(
n

k

)
xkyn−k

We note in the latter connection that while the
∑

in

(x1 + x2 + · · · + xν)k =
∑

µ

′
(

k

µ1, µ2, . . . , µν

)
xµ1

1 xµ2
2 · · ·xµν

ν

is subject to the single constraint µ1 + µ2 + · · ·+ µn = k (i.e., it ranges over all
permutations of all partitions of k), the

∑
in (29)—which can be written

B̂n,k(x1, x2, . . . , xν) =
∑

µ

′′
(

k

µ1, µ2, . . . , µν

)
xµ1

1 xµ2
2 · · ·xµν

ν

—is subject also to a second constraint µ1 + 2µ2 + · · · + νµν = n, so can be
expected to involve generally many fewer terms.

The Bell numbers—which were seen at (31) to be generated by exp[(et−1)]
—are, like all aspects of this subject, replete with combinatorial/permutational/
partional connections.30 Of which I provide only a single example: the command

29 In my Version 7 of Mathematica the commands Bell[n,x] and Bell[n]
produce Bn(x) and Bn. Subsequent versions (Version 8, released in 2010,
or later) provide a command BellY[n,k,{x1, x2, . . . , xn−k+1}] that produces
incomplete Bell polynomials of some flavor: a web site provides the example
BellY[4,2,{x1, x2, x3}] = 3x2

2 + 4x1x3.
30 For a good survey, see the Wikipedia article “Bell numbers.”
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Flatten[Table[KSetPartitions[{1,2,3},k],{k,1,3}],1]
exhibits all the ways of partitioning the set {1, 2, 3} into subsets:

{1, 2, 3}
{{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}

{{1}, {2}, {3}}

Of which there are B3 = 5. More generally, the command
Length[Flatten[Table[KSetPartitions[{1,2,3,..,n},k],{k,1,n}],1]]

—which constructs and then counts all the distinct partitions of {1, 2, 3, . . . , n}
—always responds True when set equal (==) to BellB[n], though it sometimes
takes a while; the Bell numbers become very large very fast:

B5 = 52
B10 = 115975
B15 = 1382958545
B20 = 51724158235372

Faà di Bruno, revisited. From (26) we have (in the illustrative case n = 5)

d5

dx5 Φ(f(x)) =

∣∣∣∣∣∣∣∣∣

f1D f2D f3D f4D f5D
−1 f1D 2f2D 3f3D 4f4D
0 −1 f1D 3f2D 6f3D
0 0 −1 f1D 4f2D
0 0 0 −1 f1D

∣∣∣∣∣∣∣∣∣

Φ(f(x))

Expanding the determinant (as in the case n = 4 we did already on page 16),
we have {

f5D + (10f2f3 + 5f1f4)D2 + (15f1f
2
2 + 10f2

1 f3)D3

+ 10f3
1 f2D

4 + f5
1 D5

}
Φ(f(x))

Working now from (30), we look in particular to the coefficient of 1
5! t

5 and find
5∑

k=1

B5,k(x1, x2, . . . , x5−k+1)uk

= x5u + (10x2x3 + 5x1x4)u2 + (15x1x
2
2 + 10x2

1x3)u3 + 10x3
1x2u

4 + x5
1u

5

= B5,1(x1, x2, x3, x4, x5)u1 + B5,2(x1, x2, x3, x4)u2

+ B5,3(x1, x2, x3)u3 + B5,4(x1, x2)u4 + B5,5(x1)u5

Compare the D-series with the u-series and it becomes evident that we have in
the case n = 5 (and can expect to have in general)

(
d
dx

)n
Φ(f(x)) =

n∑

k=1

Bn,k(f1, . . . , fν) · DkΦ(f) (32.1)

=
n∑

k=1

{∑

µ

′′
(

n

µ1, µ2, . . . , µν

)
fµ1
1 fµ2

2 · · · fµν
ν

}(
d
df

)k
Φ(f) (32.2)
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where again: ν = n − k + 1,
∑ν

s=1 µs = k,
∑ν

s=1 sµs = n. Equation (32.1)
provides an elegantly succinct and efficient formulation of “Faà di Bruno’s
formula,” seen now to be equivalent to “Faà di Bruno’s determinantal formula”
(26). I conclude with discussion of an uncommon application26 of the latter
that I have, over the years, found to be particularly useful.

Application to matrix theory. Let A = I − xM be a non-singular square matrix.
From the generalized spectral decomposition of A one can construct31 a matrix
B = log A such that A = eB and establish that det A = etrB. Drawing formally
upon the series

log(1 − z) = −z − 1
2z2 − 1

3z3 − 1
4z4 − · · · : z2 < 1

we expect to have

F (x) =
∞∑

n=0

1
n!Fnxn ≡ det(I − xM) = ef(x)

with

f(x) = −T1x − 1
2T2x

2 − 1
3T3x

3 − 1
4T4x

4 − · · · : Tn = trMn

= f0 + 1
1!f1x

1 + 1
2!f2x

2 + 1
3!f3x

3 + 1
4!f4x

4 + · · ·

f0 = 0 and fk = −(k − 1)!Tk : k = 1, 2, 3, . . .

From (26)—noting that ef(0) = 1—we obtain

Fn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 f3 f4 · · · fn

−1 f1 2f2 3f3 · · ·
(n−1

1

)
fn−1

0 −1 f1 3f2 · · ·
(n−1

2

)
fn−2

0 0 −1 f1 · · ·
(n−1

3

)
fn−3

...
...

...
...

...
0 0 0 0 · · · f1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−)n

∣∣∣∣∣∣∣∣∣∣∣∣∣

T1 T2 2T3 6T4 · · · (n − 1)!Tn

1 T1 2T2 6T2 · · ·
(n−1

1

)
(n − 2)!Tn−1

0 1 T1 3T2 · · ·
(n−1

2

)
(n − 3)!Tn−2

0 0 1 T1 · · ·
(n−1

3

)
(n − 4)!Tn−3

...
...

...
...

...
0 0 0 0 · · · T1

∣∣∣∣∣∣∣∣∣∣∣∣∣

Determinants of the latter design can be brought to the more attractive form

31 See “Working notes concerning Lester Lipsky’s A Markov Model of Maxwell
Boltzmann & Bose Einstein Statistics,” (November 2016), page 6.



Application to matrix theory 23

F0 = 1, Fn = (−)n

∣∣∣∣∣∣∣∣∣∣∣∣

T1 T2 T3 T4 · · · Tn

1 T1 T2 T3 · · · Tn−1

0 2 T1 T2 · · · Tn−2

0 0 3 T1 · · · Tn−3
...

...
...

...
...

0 0 0 0 · · · n − 1 T1

∣∣∣∣∣∣∣∣∣∣∣∣

(33)

by elementary manipulations, the pattern of which is illustrated below.32 From
(33) we obtain

F0 = 1
F1 = −{T1}
F2 = +{T 2

1 − T2}
F3 = −{T 3

1 − 3T1T2 + 2T3}
F4 = +{T 4

1 − 6T 2
1 T2 + 3T 2

2 + 8T1T3 − 6T4}
F5 = −{T 5

1 − 10T 3
1 T2 + 15T1T

2
2 + 20T 2

1 T3 − 20T2T3 − 30T1T4 + 24T5}...

all of which can be formulated in terms of incomplete Bell polynomials, and
which—though obtained here with the assistance of Mathematica—can be
obtained from the simple recursion relations that I have described elsewhere.26

Of course, if M is m×m then F (x) = det(I−xM) is a polynomial of degree m,
which entails Fn>m = 0. I discuss now how this comes about. The characteristic
polynomial of M can be written

det(M − λI) = (−)mλm det(I − λ−1M)

= (−λ)m
∞∑

n=0

1
n!Fnλ−n

=
∞∑

n=0

1
n!∆n(−λ)m−n with ∆n = (−)nFn (34)

Look, for example, to the case m = 3 :

det(M − λI) = ∆0(−λ)3 + ∆1(−λ)2 + 1
2!∆2(−λ)1 + 1

3!∆3(−λ)0

+
∞∑

n=4

1
n!∆n(−λ)3−n

= −λ3 + T1λ
2 − 1

2{T
2
1 − T2}λ + 1

6{T
3
1 − 3T1T2 + 2T3}

− 1
24{T

4
1 − 6T 2

1 T2 + 3T 2
2 + 8T1T3 − 6T4}λ−1 + · · ·

32 ∣∣∣∣∣∣

T1 T2 2T3

1 T1 2T2

0 1 T1

∣∣∣∣∣∣
= 1

2

∣∣∣∣∣∣

T1 T2 2T3

1 T1 2T2

0 2 2T1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

T1 T2 T3

1 T1 T2

0 2 T1

∣∣∣∣∣∣
, etc.
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which at λ = 0 would give det M = 1
6{T

3
1 − 3T1T2 + 2T3} + ∞ were it not the

case that
∆p = 0 : p > dimension m

which is a direct but non-obvious implication of the fact that ϕ(λ) ≡ det(M−λI)
is a polynomial of degree m, and—as shown below—follows from the Cayley-
Hamilton theorem:

ϕ(M) =
m∑

n=0

(−)(m−n) 1
n!∆nMm−n = O (35.1)

From (35.1) we obtain

tr[ϕ(M)Mp] =
m∑

n=0

(−)(m−n) 1
n!∆nTm−n+p = 0 : p = 0, 1, 2, . . . (35.2)

But the ∆n satisfy the recursion relation33

∆n =
n∑

j=0

(−)j+1 (n − 1)!
(n − j)!

Tj∆n−j (36)

so

∆m+p = (m + p − 1)!
m+p∑

j=0

(−)j+1 1
(m + p − j)!

Tj∆m+p−j

which (set m + p − j = n, j = m − n + p) can be written

∆m+p = (m + p − 1)!(−)p+1
0∑

n=m+p

(−)m−n 1
n!∆nTm−n+p

︸ ︷︷ ︸
0 by Cayley-Hamilton (35.2)

= 0 when m + p exceeds the dimension m of M

Which checks out: Mathematica confirms that if

M =




m11 m12 m13

m21 m22 m23

m31 m32 m33





then

∆4 = {T 4
1 − 6T 2

1 T2 + 3T 2
2 + 8T1T3 − 6T4} = 0

∆5 = {T 5
1 − 10T 3

1 T2 + 15T1T
2
2 + 20T 2

1 T3 − 20T2T3 − 30T1T4 + 24T5} = 0
...

33 The proof26 proceeds inductively from (33).
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The resuls developed above—relatively unfamilar though they are—often
prove quite useful. For example, we have in (34) a trace-wise construction of
the characteristic polynomial of M, and in

det M = 1
m!∆m(T1, T2, . . . , Tm)

a trace-wise construction of the determinant of the m × m matrix M.

If M is antisymmetric (call it A to underscore the point) then great
simplifications result from the fact that Todd = 0, and from (33) we have

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣

0 T2 0 T4 · · · Tn

1 0 T2 0 · · · Tn−1

0 2 0 T2 · · · Tn−2

0 0 3 0 · · · Tn−3
...

...
...

...
...

0 0 0 0 · · · n − 1 T1

∣∣∣∣∣∣∣∣∣∣∣∣

where only terms of the form Teven appear in the last column. Thus

∆0 = 1
∆1 = 0
∆2 = −T2

∆3 = 0

∆4 = 3T 2
2 − 6T4

∆5 = 0

∆6 = −15T 3
2 + 90T2T4 − 120T6

which—though here computed directly—could have been read off from the
descriptions of Fn = (−)n∆n presented on page 23. It is a familiar fact that
when the determinant of such matrices A do not automatically vanish they are
automatic perfect squares (of the so-called “Pfaffian”):

det A =
{

0 : odd - dimensional cases
[Pf(A)]2 : even-dimensional cases

Suppose, for example, that A is 4-dimensional and antisymmetric. Then

T2 = −2(a2
12 + a2

13 + a2
14 + a2

23 + a2
24 + a2

34)

T4 = (a2
12 + a2

13 + a2
14)

2 + 2(a13a23 + a14a24) + 8 similar terms

which when introduced into det A = 1
4!∆4(T2, T4) give

det A = 1
4! (3T 2

2 − 6T4) = ( a14a23 − a13a24 + a12a34︸ ︷︷ ︸ )2

Pfaffian of A

Such matrices A can be construed to be generators of rotations R = eA in
4-space. The characteristic polynomial of A can be written

det(A − λI) = ∆0λ
4 + 1

2!∆2λ
2 + 1

4!∆4λ
0

= λ4 + 2αλ2 + β2
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where

2α = 1
2!∆2 = − 1

2T2 = (a2
12 + a2

13 + a2
14 + a2

23 + a2
24 + a2

34) > 0

β2 = 1
4!∆4 = 1

8 (T 2
2 − 2T4) = (a14a23 − a13a24 + a12a34)2 ! 0

By the Cayley-Hamilton theorem A4 + 2αA2 + β2 I = O which can be factored
to read

[A2 + (α + ω)I ][A2 + (α − ω)I ] = O with ω =
√

α2 − β2

Assuming for the moment that ω %= 0, we establish easily that

P± ≡ ± 1
2ω [A2 + (α ± ω)I ]

comprise a complete set of orthogonal projection matrices:

P+ + P− = I
P+P− = O
P±P± = P±

With this apparatus at hand, one is led by straightforward argument34 to the
conclusion that

R = eA

= (cos φ+ · I + sin φ+ · Q+) P+ + (cos φ− · I + sinφ− · Q−) P− (37)

where φ± =
√

α ∓ ω and Q± = A/φ±. The right side of (37) describes rotations
through angles φ± on a pair of orthogonal planes in 4-space.35

If M is an m-dimensional projection matrix (call it P to underscore the
point) that projects onto a k-dimensional subspace of m-space, then

{
P2 = P and trP = k

}
=⇒ Tp = k : (all p)

and we have

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣

k k k k · · · k
1 k k k · · · k
0 2 k k · · · k
0 0 3 k · · · k
...

...
...

...
...

0 0 0 0 · · · n − 1 k

∣∣∣∣∣∣∣∣∣∣∣∣

= k!
(k − n)!

34 For details, see page 19 in “Some applications of an elegant formula. . . ”26

35 For extension of the argument to the n-dimensional case, see pages 14–18
in “Extrapolated interpolation theory” (1997).
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giving

det(P − λI) =
m∑

n=0

1
n!∆n(−λ)m−n

=
m∑

n=0

1
n!

k!
(k−n)! (−λ)m−n

= (−λ)m−k ·
m∑

n=0

(k
n

)
(−λ)k−n

= (−λ)m−k · (1 − λ)k

We conclude (not unexpectedly!) that the eigenvalues of P are
• 1, with multiplicity k, and
• 0, with multiplicity m − k.

Applications to elementary analysis. One encounters expressions of the form

[
d
dx + f ′(x)

]n
g(x)

which by the “shift rule” can be written

e−f(x)
(

d
dx

)n
ef(x)g(x) =

n∑

k=0

(n
k

)[
e−f(x)

(
d
dx

)k
ef(x)

]
g(n−k)

One can bring (26) to the development of the expression [etc.]. To avoid
notational clutter I look to the case n = 4:

RHS = g(4) + 4f ′g(3) + 6
∣∣∣∣

f ′ f ′′

−1 f ′

∣∣∣∣ g(2) (38.1)

+ 4

∣∣∣∣∣∣

f ′ f ′′ f ′′′

−1 f ′ 2f ′′

0 −1 f ′

∣∣∣∣∣∣
g(1) +

∣∣∣∣∣∣∣

f ′ f ′′ f ′′′ f ′′′′

−1 f ′ 2f ′′ 3f ′′′

0 −1 f ′ 3f ′′

0 0 −1 f ′

∣∣∣∣∣∣∣
g

which in terms of the complete Bell polynomials (page 19) becomes

= g(4) + 4B1(f ′) · g(3)

+ 6B2(f ′, f ′′) · g(2)

+ 4B3(f ′, f ′′, f ′′′) · g(1)

+ B4(f ′, f ′′, f ′′′, f ′′′′) · g (38.2)

In the case g(x) = 1 we recover the Faà di Bruno -Ivanoff determinant F4

that appears on page 22. We can expect interesting results to arise from (38)
whenever f(x) has nice derivative properties. For example, in the simplest case
(f(x) = − 1

2x2, g(x) = 1) one is led to determinantal/Bell descriptions of the
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Hermite polynomials

Hen(x) = (−)ne
1
2 x2( d

dx

)n
e−

1
2 x2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 0 · · · 0 0
1 x 2 0 0 · · · 0 0
0 1 x 3 0 · · · 0 0
0 0 1 x 4 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · x (n − 1)
0 0 0 0 0 · · · 1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(39)

= Bn(x, 1, 0, 0, . . . , 0)
⇓

He1(x) = x

He2(x) = x2 − 1
He3(x) = x3 − 3x

He4(x) = x4 − 6x2 + 3
He5(x) = x5 − 10x3 + 15x

The recursion relation

Hen(x) = xHen−1(x) − (n − 1)Hen−2(x)

and some of the many other properties of the Hermite polynomials can be
obtained as quick consequences of (39).

ADDENDUM

On page 9 I had occasion to remark that

( n
m

)
= n(n − 1) · · · (n − m + 1)

1 · 2 · 3 · · · · · m : n and m " n integers

“gives every appearance of being a fraction,” though as the answer to a question
of the form “In how many ways. . . ?” it must certainly be an integer. That
such denominataors are invariably factors of such numerators I conceived to be
a number-theoretic proposition which I was unable to demonstrate.15 Nor am I
yet. Ray Mayer has, however, remarked that the fact that binomial coefficients
are integers can be proved by induction: if it be granted that the numbers(n−1

k

)
on the (n− 1)th row of Pascal’s triangle are integers, then it follows from

Pascal’s identity (
n − 1
k − 1

)
+

(
n − 1

k

)
=

(
n

k

)

that so also are the numbers on the nth row.
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This small matter acquires interest from the fact that Gaussian binomial
coefficients—Gauss’s q -analogs of ordinary binomial coefficients

(
n

k

)

q

=
[n]q!

[k]q![n − k]q!

= (1 − qn)(1 − qn−1) · · · (1 − qn−k+1)
(1 − q)(1 − q2) · · · (1 − qk)

(19.1)

—appear on their face to be ratios of polynomials. It is certainly not obvious
(to me) that in all cases the denominator is a factor of the numerator, though
that is, in all specific cases examined, demonstrably the case (according to
Mathematica). One has, however, this q -analog of Pascal’s identity

(
n − 1
k − 1

)

q

+ qk

(
n − 1

k

)

q

=
(

n

k

)

q

(22)

which is all that is required to construct a q -analog of Mayer’s proof by
induction: if the (•)q expressions on the left are q -polynomials then so also
is the (•)q expression on the right. Pretty. . .but this line of argument leaves
unanswered the question: Why is the denominator a factor of the numerator?
To which, my instincts tell me, there exists an elegant one-line answer.


